
Rl FILE COPY rZ^&MUST
ESD-TR-71-221 Copy No.

JL .cys.

CONCURRENT DATA SHARING PROBLEMS
IN MULTIPLE USER COMPUTER SYSTEMS

MTR-2052

, ESD RECORD COPY
RETURN TO

iORI)t Budding 1435

J. B. Glore
L. B. Collins
J.K. Millen

JULY 1971

ESD RECORD COPY

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project 5550
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-71-C-0002

AD?3i7rz

)

1>

When U.S. Government drawings, specifications,

or other data are used for any purpose other than

a definitely related government procurement

operation, the government thereby incurs no re-

sponsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy

ESD-TR-71-221 MTR-2052

CONCURRENT DATA SHARING PROBLEMS
IN MULTIPLE USER COMPUTER SYSTEMS

J. B. Glore
L. B. Collins
J.K. Millen

JULY 1971

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project 5550
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-71-C-0002

FOREWORD

This report presents the results of analyses conducted by The MITRE
Corporation, Bedford, Massachusetts in support of Project 5550 under
contract F19(628)-71-C-0002. Dr. John B. Goodenough (ESD/MCDT-1)
was the ESD Project Monitor. The report provides a technical baseline
guiding further research in this area; additional reports on this topic will
be published in the future.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

EDMUND P. GAINES, JR. , Colonel, USAF
Director, Systems Design & Development
Deputy for Command and Management Systems

11

ABSTRACT

This report summarizes work performed to date under the FY'71

Project 6710 Multi-User Data Management System task. It reviews

major problems associated with the sharing of data among multiple

concurrent users, and tentatively suggests promising strategies to

cope with them. It discusses the importance of solving, amelio-

rating, or avoiding such problems to the effective development of

Air Force systems of this kind. It also outlines desirable future

work under this task.

iii

ACKNOWLEDGMENTS

Several persons have contributed substantially to the develop-

ment of this report. Dr. Millen and Mr. Collins provided material

for Section IV; Mrs. J. A. Clapp revised it. Mr. Collins drafted

Section III and contributed to Section I. Mr. Glore wrote Section II

and completed the other sections. Mrs. Clapp, Mr. C. M. Sheehan, and

Mr. E. W. Williamson critically reviewed the draft. Miss Dorothy

Statkus and Miss Cynthia Smith typed and proofread the original

material and its many revisions.

iv

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

Page

vii

SECTION I INTRODUCTION 1
OBJECTIVES 1
PROBLEM OVERVIEW 1
Characteristics of Vulnerable Computer Systems 2
Classification of Shared Data Problems 3

TYPES OF SUSCEPTIBLE SYSTEMS 7
APPROACH 9
PLAN OF THIS REPORT 10

SECTION II TECHNICAL ANALYSIS 12
BASIC CONCEPTS 12
Users, Tasks, Processes, and Processors 12
Time Relations of Processes 14
Fields 16
Data Structures 17
Access-Related Data Properties 18
Related Sets 19
Related Set Intersection 22
Periods of Membership 24
An Alternate View of Related Set Membership 25
Critical Sections 25
Access Control Mechanisms 26
Deadlock 30

PROBLEMS 31
Effects of Ill-Coordinated Data Sharing 31
Effects of Excessive Data Sharing Control 36
Deadlock 41
Other Problems 42

PROMISING APPROACHES 42
Consecutive Processing 43
Data Distribution 46
Summary 55

TABLE OF CONTENTS (Concluded)

SECTION III OPERATIONAL PROBLEMS AND SOLUTIONS 56
INTRODUCTION 56
Approach 56
Summary 57

USER PROCEDURE PROBLEM CHARACTERISTICS 58
Alternative Solutions 59
Operational Constraints 59
Importance of Operational Considerations 61

SURVEY OF DATA SHARING IN EXISTING SYSTEMS 62
Types of Concurrent Data Sharing Systems 62
Specific Examples 63
Discussion 65

SECTION IV WORK PROGRAM 72
OBJECTIVES 72
APPROACH 73
DETERMINATION OF REQUIREMENTS FOR DATA SHARING 74
TECHNIQUES FOR CORRECT MANAGEMENT OF SHARED DATA 75
QUALITATIVE AND QUANTITATIVE CONSEQUENCES OF
DATA SHARING 75
Techniques 75
Control of System Processes 76
Data Access Control 77

REFERENCES 79

vi

LIST OF ILLUSTRATIONS

Figure Number Page
1 Consecutive Processes 15
2 Interleaved Processes 15
3 Overlapped Processes 15
4 Related Set Intersection 23

vii

SECTION I

INTRODUCTION

OBJECTIVES

This report of work performed under the FY'71 Project 6710 Multi-

User Data Management Systems Task has three prime goals. The first is

to outline the major problems associated with the sharing of data

among several concurrent users and processes in multiple user computer

systems; e.g., multiprogramming systems executing computer programs con-

currently for more than one user. The second main goal is to show

the importance of solving, ameliorating, or at least avoiding these

problems in Air Force systems of this kind. The third basic objec-

tive is to sketch desirable future work to refine further these

problems' definition, to examine their implications, to develop

alternate solutions to them, and to evaluate these solutions.

PROBLEM OVERVIEW

Informal explanations and illustrations of concurrent data

sharing and its problems are included here to introduce these some-

what unfamiliar concepts to the many persons who have yet to encounter

them. More thorough treatment, including definition of certain essen-

tial terms, may be found in Section II, entitled TECHNICAL ANALYSIS.

The use of certain standard information processing vocabularies

is suggested to clarify technical terminology not explicitly defined

in this report.

Data are shared whenever two or more persons or processes access

them. (A typical process is a sequence of computer program instruction

executions or other machine operations.) There is nothing new about

data sharing as such. Data have been shared more or less successfully

for thousands of years. More recently, but prior to the introduction

of computers, satisfactory manual and semi-automatic information-

handling systems involving shared data were routinely worked out,

installed, and operated in many business and government offices.

Such common data were used in part to communicate among these systems'

segments. These systems' principles, somewhat modified, were adapted

to early computer applications, especially in business data proces-

sing. The same principles are embodied today in thousands of suc-

cessful batch processing computer applications that routinely pro-

duce a variety of files and reports shared by many users.

These obvious successes tend to cast doubt on data sharing pro-

blems as serious hazards in computer application design. Yet, such

difficulties can occur, causing trouble when they do, especially

(but not exclusively) in systems that allow processes to share data

concurrently; i.e., without strict time separation of all occasions

of use.

Characteristics of Vulnerable Computer Systems

The past incidence of concurrent data sharing problems in opera-

tional computer systems has been slight, for reasons discussed in

Section III. There is now a trend, however, both within and outside

the Air Force, toward development or acquisition of computer systems

especially vulnerable to such problems; e.g., AABNCP, MACIMS. These

susceptible systems typically contain related groups of large and dynam-

ically changing files often updated by real time inputs and frequently

referenced by several concurrent users at on-line terminals. Such

users cooperate through rapid interaction with common data. Some-

times a user may need only to insert a few values or obtain a few

facts from a shared data base. On other occasions he may perform

complex and time-consuming analyses, interacting with special al-

gorithms and data shared with others in heuristic problem-solving

attempts; e.g., in tactical planning.

In such a system no user's action may be allowed to garble

shared data or cause another user to obtain incorrect results. Nor

may the actions of one or more users excessively degrade the system's

response time to other users' requests. As a rule system response

time requirements preclude the relatively safe sequential and batch

approaches to change and information request processing. Instead,

highly concurrent access by several processes to common data may

be needed to meet response time requirements. As this report shows,

the major data sharing problems result from failure to regulate

these conflicting requirements.

Types of computer systems subject to one or more data sharing

problems are identified in the subsection below entitled TYPES OF

SUSCEPTIBLE SYSTEMS, and discussed more fully in Section III. First,

however, we briefly classify and illustrate the major problems them-

selves.

Classification of Shared Data Problems

Shared data problems can be divided into system error, system

performance, and user procedure problems. System error problems

can be broken down further into (1) those that garble the data

base, (2) those causing no data base damage but which may cause

erroneous output, and (3) those that permanently prevent certain

processes from proceeding. System performance problems yield no

wrong results but impair response times. User procedure problems

afflict the computer system's operational users even though the com-

puter system itself may be said to operate without error and performs

acceptably. Each group of problems is illustrated below.

System Error Problems

Two or more processes may alter a common field inconsistently;

e.g., when a second process' action begins based on the field's

old value before another's modification is complete. Similarly a

related set of fields, e.g., fields of a conventional serial file

and of indexes that refer to them, can be changed inconsistently if

all significant results of one process' actions are not recorded

before another refers to them. If the second process obtains

portions of an index before the first has revised and replaced them,

the second may either change them wrongly or use them to reference

the wrong serial file field. Also, the first process may overwrite

the index as adjusted by the second, effectively erasing the record

of the second process' actions. At its worst, such interference can

not only pollute the data base, but can also cause a process to

destroy itself or others if it uses inconsistent control information

to determine its behavior.

The sets of fields that are implicitly related in updating even

a simple file can be surprisingly large. For instance, insertion or

deletion of a record may entail adjustment of a record count or dis-

placement of other records within a block in storage. The count and

other records in the block must therefore be considered part of the re-

lated set.

*

Limiting to but one process at a time the right to update data

can prevent garbling, although system throughput usually suffers in

consequence. However, one or more processes allowed to read data that

one other process is concurrently updating may still obtain wrong or

inconsistent results, even though the updating is done correctly.

For example, a reader might fetch a single field's contents either

before or after its alteration, without knowing which state of the

field the value obtained represented. Similarly, a summary prepared

during updating is likely to be time-inconsistent, including some

values read before modification and some read afterward.

Inappropriate access-limiting algorithms can cause deadlock. In its

simplest form, deadlock occurs when each of two routines has been allowed

exclusive use of a resource (e.g., a subset of common data) needed by

the other to continue execution. For example, deadlock will occur in

the following circumstances. Suppose process 1, updating a file of

two records, A and B, first obtains and locks A and then requests B

(e.g., of the operating system). Further, suppose process 2, concur-

rently summarizing the same file, has obtained and locked B and then

requests A. Neither can continue, since each needs data locked by

the other.

System Performance Problems

Prohibiting both multiple concurrent updating and all concurrent

reading during updating can prevent inconsistent results. These

restrictions may unacceptably delay processing of important informa-

tion requests, however. Even multiple concurrent reading without

updating can impair system performance (although it more often per-

mits improved performance).

Access control techniques devised to prevent system error

problems tend to cause system performance problems. The locks re-

quire storage space, and their use entails otherwise unnecessary

storage accesses. Inappropriate computer processor design may

entail clumsy programmed lockout algorithms. Since locks them-

selves are prime examples of shared data, special computer instruc-

tions may be needed to inspect and set a lock indivisibly so that

no other programs can interfere before the first program can act on

it. Most programmed lockout strategies actually used also tend to

impair system performance by constraining the possible concurrent

operations allowed.

User Procedure Problems

A multiple user computer system that consistently yields results

correct according to specifications and within prescribed response

time limits may still suffer from user procedure problems. Con-

fusion resulting from multiple concurrent use that would not occur

during sequential or batch processing typifies such problems. For

example, two agents using an on-line airline reservation system

might try to book the last seat on the same flight after each had

just requested seat availability and had been notified, correctly,

that one seat remained open. One agent's booking request, however,

would be rebuffed causing user inconvenience and unnecessary computer

processing. The systems's action would be correct according to speci-

fications, although one might argue that the specifications, and the

computer program, should be changed.

Again, after a typical period of multiprogrammed computer opera-

tion, badly disciplined data sharing might combine with other factors

to erase the exact history of significant events, provided each in-

put was not logged, tagged with source and time of entry. Such

confusion could prevent reconstruction of information needed for de-

bugging, audit, or system recovery. Consequent inability to pinpoint

errors could ultimately destroy user confidence in system operation.

Consequent inability to recover correctly from system failure could

render system use infeasible. Yet the logged information might be

quite adequate to rerun a sequential or batch processing system.

TYPES OF SUSCEPTIBLE SYSTEMS

At least three groups of computer programs that need to share

data on a highly concurrent basis may be distinguished. The first

comprises application-specific programs, such as the central on-line

routines of certain military command control systems, airline reserva-

tion systems, and air traffic control systems. The second group con-

sist of much-desired on-line multi-user generalized data management

systems. Multiprogramming and multiprocessor computer operating

systems designed to share resources dynamically among several con-

currently executing tasks comprise the third group.

The operational SAC Control System and the planned Advanced

Airborne Command Posts exemplify military command control systems

with different approaches to the management of data sharing. In the

former, updating normally occurs in small batches during whose

processing all retrieval is shut out. Some of the advantages and

difficulties of this approach with respect to data sharing are men-

tioned in a joint SAC/System Development Corporation study report.

Advanced Airborne Command Post on-board data processing subsystem

operation for both SAC and NEACP will, as currently planned, em-

phasize serial instead of small-batch data base updating both by

several persons at on-line consoles and automatically via communica-

tion link. Adequate response times without extensive parallel task

See Osajima, et el., ' pp. 23-24, and 28-32.

execution are unlikely. The discipline of data sharing in this

system has yet to be explored in detail, and represents a challeng-

ing prospect for application of this task's research.

2
Successful on-line airline reservation systems such as the IBM

SABRE and PARS systems, have been operational for a few years, with an

advanced version of the latter now under development. Limited-objective

fixed-transaction solutions to data sharing problems are characteristics

in such systems. Among the techniques needing successful transfer

between such systems is the discipline of data sharing. The Military

Airlift Command (MAC) is now planning an on-line reservation system,

as part of the MAC Information Management System (MACIMS), which will

require procedures and mechanisms to control data sharing. We believe

that the MAC design effort could benefit substantially from results

of this research.

On-line multi-user generalized data management systems such as

ADAM, TDMS, and GIM^ ' built to date have generally either

ignored data sharing problems or else partly avoided them through

2
A succinct introduction to airline reservation system functions
and some of their problems may be found in Martin, Chapter 15,

3 (5)
The description of ADAM's capabilities in the CODASYL survey,
Chapter 3, is the best generally available, although it does not
stress data sharing.

4 (5)
TDMS is also described in the CODASYL.survey, Chapter 10, and
in other generally available papers^ which again do not
address data sharing.

restrictions on concurrent use. For example, ADAM executed only

one on-line user terminal command at a time; meanwhile any other

terminal commands entered were merely queued. TDMS similarly re-

stricts concurrent operations involving the same data base. None

of these computer programs is operational in an environment requir-

ing rapid response to several concurrent on-line users. Consequently,

the delays caused by these deficiencies have only been annoying.

Extrapolation to severe trouble in operational use is easy, however.

Desired future on-line generalized data management systems must pro-

vide better response to more users, and must also protect the large

integrated data bases from garbling by the ill-coordinatec; set;

of several users. No known generalized data management system now

provides these capabilities.

Multiprocessor systems, and single central processor multiprogram-

ming systems that allow dynamic resource sharing, provide for com-

munication among tasks (and among processors, in multiprocessing

systems) in part via shared data. They must also prevent deadlock

over shared resources, a problem common to systems sharing

data.

APPROACH

The effort to date has been largely conceptual. It has involved

the following initial activities:

1. review of technical literature that refers to con-

current data sharing and allied problems;

2. formulation of a classification of the problems

associated with data sharing;

3. collection and postulation of techniques to avoid

or ameliorate some of these problems;

4. review of certain existing or planned computer applica-

tions which have had data sharing problems, which could

have such problems in the future, or in which data shar-

ing problems have been avoided at some cost in system

effectiveness;

5. qualitative estimation of improvements in these systems

obtainable through various shared data control techniques;

and

6. postulation of feasible activities to more clearly de-

fine data sharing problems and to investigate possible

solutions.

Further effort along these lines is anticipated.

PLAN OF THIS REPORT

The subsequent sections of this report reflect these activities

and the report's objectives stated earlier. Section II comprises

an initial technical analysis of the major problems associated with

concurrent data sharing. It discusses important effects of both

inadequate and excessive constraints on data sharing, and reviews

several promising approaches to their resolution.

10

Section III examines user procedure problems associated with data

sharing and briefly reviews several existing and proposed systems

for instances of these problems or ways to avoid them. These examples

are drawn either from specific Air Force systems or else from others

with functions very similar to Air Force applications. It distinguishes

three general approaches to such solution attempts and indicates how

several of the systems surveyed have applied them.

Section IV states the aims of, and approach to, a desirable

future technical work program. It also outlines the major activities

and tasks comprising the program and suggests the kinds of products

to be generated during the effort.

Finally, a list of technical reports and papers found useful

during our preliminary analysis and referenced in this report is

included.

11

SECTION II

TECHNICAL ANALYSIS

This section of the report, analyzes the major system error and

system performance problems of concurrent data sharing thus far con-

sidered, after first discussing several basic concepts pertinent to

the analysis. It then briefly explores a few promising approaches

to these technical problems' solution. User procedure problems are

discussed in Section III. Section II-III treat in greater depth

many of the same problems touched on in Section I.

BASIC CONCEPTS

Before analyzing specific cases, we first explain and informally

define several basic concepts. These are deliberately made no more

precise than necessary to distinguish the situations discussed.

Users, Tasks, Processes , and Processors

For our purposes it is sufficient to define a user as some

person for whom a computer system (comprising both equipment and

software) is operated. Users may submit work for off-line computa-

tion or communicate with an on-line system by means of remote batch

stations or via interactive on-line terminals, local or remote.

A computer system accomplishes each user's work by performing

a computation or task. A task is a coordinated set of processes.

Each process is a sequence of machine operations; i.e., those directed

by a sequence of one or more indivisible steps: each a central pro-

12

cessor instruction or a data channel command. Any process of two or

more steps can be divided into consecutive subprocesses, each a

sequence of one or more steps, and thus a process.

A process is active when it is driving a processor. Otherwise,

a process is inactive or suspended. A processor is a device able

to interpret a sequence of one or more machine instructions or com-

mands and to initiate and control a set of machine operations for

each element of the sequence.

In a typical multiprogrammed computer system, there are usually

two basic types of processors: (1) so-called central processors,

which execute most of the arithmetic, logical, and control operations,

mainly on operands stored in main memory; and (2) (data) channels,

specialized input-output processors that mediate transfer of blocks

of data between main memory and either auxiliary storage or peripheral

devices.

A channel is actually operated as a slave of the one or more

central processors in the system. A central processor instruction

is required to initiate each block's transfer (which may be considered

a process). The channel then directs the details of transfer opera-

tion without further central processor attention, signalling the

central processor only when transfer has ended (normally or otherwise),

Thus, a computer that includes a single central processor and one or

Dennis and Van Horn^ ' (p. 145) define a process (in the same sense
that we use it here) as "...that abstract entity which moves through
the instructions of a procedure as the procedure is executed by a
processor."

13

more channels actually multiprocesses data, although we reserve the

term multiprocessor for a system that includes at least two central

processors. Most so-called high-speed channels process but one transfer

at a time. Multiplexor channels, however, can concurrently control

several, by interleaving the handling of small packets of data. This

interleaving is strictly equipment-directed, involving no program

execution.

A typical central processor executes the machine instruction

sequence of but one process at a time. Normally, this active process

can be suspended (or terminated) and another process activated, in

one of two ways. Either the first process gives up control of the

central processor by deliberately causing an interrupt, or else

control is seized from it as a result of an interrupt caused by an

event external to the process (e.g., a channel signalling completion

of a block transfer, a clock interrupt ending a time-slice). In

either case, the central processor then begins a different process

(usually an operating system function). This second process, if

correct and allowed to terminate normally, may either (1) return

control to the original process or (2) activate a different (third)

process.

Time Relations of Processes

Thus far we have used the term "concurrent" rather loosely to

refer to active processes that overlap somewhat in time. In this

sense, two processes are concurrent if and only if one starts before

the other finishes. Processes which are not concurrent will be

termed consecutive. Figure 1 depicts consecutive processes.

14

Process A

Process B

Process A

Process B

Process A

Process B

•»

Time

Figure 1. Consecutive Processes

Time

Figure 2. Interleaved Processes

">

Time

Figure 3. Overlapped Processes

15

Since most processes entail execution of a sequence of machine

instructions (and the possible occurrence of other events), two

important cases of concurrent processes can usefully be distinguished:

interleaved and overlapped execution. During interleaved execution,

concurrent processes time-share a processor. Only one process at a

time is active, however. Use of the processor oscillates between

processes as a function of programmed and external conditions (e.g.,

interrupts). As a result, at least one process is suspended and then

resumed. Figure 2 shows two interleaved processes.

In contrast, during overlapped execution, both processes are

jointly active during at least some small time interval, as Figure 3

illustrates. Overlapped activity of two processes requires two pro-

cessors in simultaneous operation. Overlapped execution typifies

effective multiprocessing. Many conventional computers also provide

for overlapping a single central processor's operation with those of

one or more channels.

Overlapped execution always involves some interleaving; i.e.,

times when only one process may be active. Although efficient use

of cooperating processors requires their overlapped operation most

of the time, their occasional coordination and communication are

necessary to effect cooperation.

Fields

We define a field as the contents of a contiguous sequence of

computer storage elements with well-defined storage address bounda-

ries (e.g., start, and length or end), a specific user-defined mean-

ing, and a single definite value on each occasion referenced. (Fields

may take on different values on different occasions.) Fields are

16

the smallest addressable units of Information, from which all

data structures are composed. It is important to note that a field

is a conceptual entity, unlike, e.g., a register. The definition

given covers fixed-length and most variable-length fields, including

the common cases where an initial count or a terminal bit configura-

tion defines a field's length. It excludes certain esoteric con-

figurations in which parts of a value are separately represented;

e.g., non-contiguous overflow bits, length specification disconnected

from variable-length value. However, all such cases can be treated

satisfactorily as related sets of fields, discussed shortly. The

definition also excludes consecutive bit sequences containing sub-

sets sometimes treated separately. Examples of the latter include

the fixed-point part and exponent of a floating point number; the

month, day and year of a date; and the individual characters of a

character string. To data sharing analysis, such a subset may be

ignored if it is never the independent operand of concurrent processes.

Otherwise, it may be considered part of a related set.

Data Structures

Fields logically related or frequently referenced in closely

spaced time intervals are often grouped into records. A conventional

serial file is composed of a sequence of records. A parallel file

(fully) inverted file, or an indexed serial file may each be regarded

as a group of related subfiles, each of which is a serial file. The

entire collection of (machine readable) files is often called the

data base. Hence, these more complex structures are also ultimately

composed of records. Temporary storages (e.g., queues), vectors,

and the rows of matrices (stored by row) may similarly be considered

serial files.

17

Access-Related Data Properties

We next note several properties of data based on the ways in

which they may be accessed. Both data sharing problems and promising

approaches to their amelioration depend substantially on these prop-

erties.

Some data may not be subject to change by any of the particular

set of processes in operation during a time period of interest. Such

read-only data can often be distinguished advantageously from alterable

data in planning these processes operation.

Two or more fields that have the same meaning and value (but

distinct storage locations) are termed copies of one another. Two

data structures are copies if each field of one has exactly one copy

in the other, and if the fields of each data structure have the same

relative storage locations. In a sense, a copy is made whenever data

are moved from auxiliary storage to main memory, but in this paper

the notion of "copy" will be limited to a duplicate of data in both

form and content such that a process can use either and obtain the

same results. A field or data structure that has no copy we term

unique.

A field or group of fields that but one process may reference

(i.e., read or write) is said to be private to that process. In con-

trast, data that two or more processes may reference are said to be

shared by or common to those processes. Common data may comprise one

or more copies, but usually a set of processes shares a unique set of

fields. (As subsequently discussed, data are often copied to avoid

data sharing.) Except as otherwise noted, we shall henceforth mean

unique shared data when speaking of shared or common data.

18

Common data may be shared consecutively or concurrently. In

consecutive data sharing, i.e., during either conventional batch

processing or seriatim processing (in which transactions are processed

one at a time), each of the sharing processes has exclusive access to

the data during its entire period of operation. Consecutive data

sharing presents no unusual problems. In concurrent data sharing,

however, two or more processes desire overlapped or interleaved

access to one or more common fields. The many concurrent data sharing

problems are the subject of this research.

Related Sets

The exact set of fields that a process references we term that

process' related set. Related set membership may differ from pro-

cess to process, even among those executing the same procedure. A

process' related set may include read-only and alterable data,

private data, and data the process shares with one or more other pro-

cesses. A related set may also include copies. During different

steps in a process' operation its related set may include different

values of the same alterable field, changed either by the process

itself or by other, cooperating, processes. Related set membership

seldom corresponds precisely to file membership. A related set may

include fields in the same record, in different records in the same

or related subfiles, or in different files.

Related set is.a generalization of consistent set, a concept found
in Waghorn,^- page 204.

19

To illustrate, several simple examples are presented of processes

and the elements of their related sets:

1. The values of the control field of the records in a batch

comprise the related set of a process summing them and

checking the result against a control total.

2. With respect to posting a payment record entering an

accounting system, the payment record values referred to,

the resulting entries made in all accounts, and the cor-

responding control totals, comprise a related set.

3. The items of a linked list comprise a related set with

respect to any list-processing operations.

Some members of a process' related set may be difficult to

identify. Many processes' main functions entail other actions, con-

ditionally and perhaps infrequently, which can in turn cause even more

remote events, perhaps in several stages. These cascading operations

we call rippling and their results ripple effects. All the data

they reference are part of the process' related set. Identifying such

obscure members of a related set requires especially careful analysis.

20

Also, a process' related set may Include some data that it

accesses only to reference other values. For example, to alter a

partial-word field, a process must normally handle the entire machine

word of which the value desired is a part. Again, a process may

A (machine) word is a (fixed-length) unit of information that can
fill an entire main memory register. Main memory register length
is typically fixed for a given model memory. Lengths of 16, 24,
32, 36, and 48 information bits are common. Whenever a memory
register is addressed (by a processor) to obtain information, its
entire contents are fetched. Similarly, the entire memory register
is rewritten during any store operation. Thus, information is
always fetched from or stored into conventional main memory in
word-length quanta. On analysis, apparent exceptions turn out to
be spurious, entailing more complex operations. To obtain part of a
word, a processor must first fetch (copy into a processor register)
the entire word and then isolate the desired portion there. To
store a partial-word field, a processor must first fetch the entire
prior contents of the memory register that will eventually hold the
result, combine it with the partial-word field in a processor re-
gister, and store the full-word result into memory. To obtain ad-
jacent information from two consecutive memory registers, a processor
must first fetch the entire contents of both. A processor performs
multiple word fetches and stores (e.g., multiword internal data
transfers) as sequences of single-word memory fetches and stores.

21

Q

need to read in an entire auxiliary storage block in order to

examine a single record in that block.

Related Set Intersection

A process may share one or more of its related set members with

one or more other concurrent processes. Those common data comprise

the processes' related set intersections. Figure 4 illustrates the

intersecting related sets of three processes, A, B, and C. The alter-

able members of a related set intersection comprise a critical set.

Processes' related sets may intersect for several reasons. In

some situations a shared field may be used to communicate among pro-

cesses. In other cases different processes may use the same field

for different purposes. In any case the use of critical sets must

be coordinated.

o
A block is a unit of information read from or written on an auxil-
iary storage device as a result of a single basic central processor
request of a channel. In this respect, an auxiliary storage block is
analogous to a main memory word. However, typical blocks are larger
(e.g., 10-1,000 words) and may be variable in length. Also, the time
needed to complete transfer of a block between main memory and an
auxiliary storage device, the transport time, is about 4-5 orders of
magnitude larger (approximately 10-400 ms.) than main memory access
time, even if a separable request (i.e., a seek command) can be given
to reduce latency through partially prepositioning the auxiliary
storage device before a block transfer command is issued. As de-
fined by Denning' 3' (p. 157), a block's transport time includes
time spent waiting (1) in a queue for issuance of its channel com-
mand, (2) to complete positioning of the (mechanical) auxiliary
storage device (latency), and (3) for information transfer to end.
We largely ignore (1). (2) can be substantial, forcing large block
size. (3) uses modest fraction (about 1/20 to 1/2) of the main
memory cycles. Even where minimum block size is small, the need
to amortize substantial latency per block over many words usually
forces a much larger block size, to minimize overall input-output
time.

22

Legend:

A, B, C

AB, AC, BC

ABC

the related sets of three concurrent processes,

the two-process related set intersections,

the intersection of all three processes.

Figure 4. Related Set Intersection

23

Related set intersections have several important implications

for data sharing analysis. Processes whose related sets are dis-

joint share no data and can be run independently, other resources

permitting. Conversely, concurrent processes can conflict to yield

erroneous results over their critical sets, but not over other

members of the related sets. Inappropriate methods of policing

such conflict can cause system performance problems or permanently

block certain processes' completion. Thus, accurate determination

of related set boundaries and their intersections is fundamental to

avoidance or reduction of data sharing problems. Most of the data

sharing improvement strategies suggested below under PROMISING

APPROACHES involve minimizing related set intersections.

Periods of Membership

To reduce further the extent of data sharing, the notions of related

set, related set intersection, and critical set must be time-constrained.

To assure a process' correct operation, a field need not join a pro-

cess' related set until the point in the process when another process'

reference to that field could cause either process to err. Also, a

field may leave a process' related set when its reference by any other

process could affect neither process' correctness. Each interval

between the time a field joins a process' related set and the time

it leaves, we term a period of membership in that related set. In

principle, a field can have one or more periods of membership in a

process' related set. Contention among data sharing processes may

be reduced if fields' periods of membership in related sets can be

precisely established rather than assumed always to coincide with the

duration of the entire process.

24

An Alternate View of Related Set Membership

A complementary view of related set membership results from

noting that a process' related set is the union of its subprocesses'

(usually smaller) related sets, and that a process may be divided

arbitarily into consecutive subprocesses of one or more steps each.

By appropriately partitioning a process into subprocesses, its re-

lated set (and thus its related set intersections) can be approxi-

mated as closely as desired, even if its periods of membership as

defined above are ignored and if one assumes instead that each sub-

process' complete related set belongs to that subprocess during its

entire period of execution.

Critical Sections

That part of a process (or possibly the entire process) which
9

uses a critical set can be termed a critical section. To maintain

properly the data used by critical sections their execution must be

constrained so that two critical sections which have the same critical

set cannot operate concurrently. In other words, a critical section

must be made indivisible with respect to reference by other processes

to its critical set.

A process may include zero, one, or more critical sections,

each required to safely access the same or a different critical set.

Although the critical sections that access the same critical set must

occur consecutively, critical sections that access different critical

sets may run concurrently.

9After Dijkstra,(14) p. 53,

25

A critical section may comprise a single step or many steps.

Some critical sections are very long. Since most central processors

can be interrupted between any two instruction executions, special

precautions must be taken to prevent interruption, or else to bypass

its effects during a critical section. Tbese are discussed next.

Access Control Mechanisms

All access control mechanisms aim to allow but one process at a

time access to a common field or related set intersection. Such

denial of concurrent access is often termed lockout or locking.

Hence, access control mechanisms may also be considered locking

mechanisms. Two groups of locking mechanisms can be distinguished:

hardware locking and programmed locking. Hardware locking, as the

term Implies, is performed entirely by computer hardware. Hardware

locking mechanisms include the primitives (basic operations) neces-

sary to accomplish programmed lockout. Programmed locking mechanisms

are algorithms that implement a lockout strategy using hardware lock-

ing and programmed locks as primitives.

A (programmed) lock is a field whose value indicates whether a

process may access certain data or enter a critical section, or

whether the process must suspend execution. Other information; e.g.,

a list of suspended processes, may be associated with a lock. What

a lock guards we term its domain or scope, either a group of shared

data items, one or more routines, or both. A lock's domain is es-

tablished by convention. A process lock guards a critical section

and thus indirectly some set of shared data. A data lock guards

some set of data explicitly, ideally a related set intersection but

often an entire file. A lock is itself a prime example of shared

data. The use of locks with unnecessarily large domains we term

overlocking.

26

Hardware locking mechanisms include interlock, locking instruc-

tions , and storage protection mechanisms. Interlock is entirely

equipment-determined. Lock instructions and storage protection, in

contrast, can be specified as components of programmed locking

algorithms.

Interlock

Interlocks associated with each active shared storage-processor

pair protect that storage from access by the same or another processor

for some minimum time period. In well-designed equipment, the inter-

lock time is just enough to let the information just read or written

"settle" from disturbance by the access. Interlock time is usually

constant (or varies within narrow limits) for a particular processor-

storage device pair and a fixed amount of information transferred.

Thus, while one processor accesses a conventional destructive readout

(DRO) core memory bank shared with another processor, the other

processor is denied access for an entire memory cycle (on the order

of 1-4 us.), the time needed to read out and restore, or to read out

and replace (but not both) the accessed memory word. During this

memory cycle, access is also denied to any other word in the same

core bank (but not to words in other banks). (This denial, which we

term secondary interlock, results from core memory equipment limita-

tions. It would not necessarily occur in other types of main memory.)

Access to auxiliary storage is usually interlocked for much

longer than access to main memory for several reasons. First, a

single high-speed channel may connect several auxiliary storage

devices to main memory. During a block transfer such a channel is

dedicated to a single auxiliary storage device and is interlocked

against access to any other device (except; e.g., for seek and rewind

27

commands). A multiplexor channel, however, can interleave the con-

current block transfers of several auxiliary storage devices (provided

their total data rate is not too high). Second, the auxiliary storage

device itself is normally interlocked during an entire block transfer.

In contrast, a central processor is normally interlocked only

for the duration of a single instruction execution. In many machines

this is not long enough to assure execution of a critical section.

For this purpose, one or more locking instructions, discussed next,

may be defined.

Locking Instructions

In a single central processor multiprogramming system, inter-

leaving of processes occurs as a result of interrupts, which in gen-

eral can occur between any two machine instructions' execution. Thus,

in such a computer system, interrupt masking (interrupt disabling

and enabling) instructions are commonly used to assure uninterrupted

critical sections within the operating system. Interrupt masking

could theoretically protect critical sections elsewhere. Since, how-

ever, interrupt masking instructions are privileged (i.e., executable

only in the supervisor state) in most computers, only operating

system processes can execute them. Other processes would have to

call on the operating system to mask interrupts.

Some configurations, however, allow simultaneous connection of the
same main memory module and auxiliary storage device via two cr
more channels. In such cases, two or more data block transfers
may be in process concurrently depending on factors such as the
number of independent drum read-write heads. Here separate sectors
of a drum track are interlocked independently, allowing parallel
drum access. Similarly, the two or more channels time-share the
main memory on a word-at-a-time basis.

28

To implement a critical section as a single machine instruction

also assures its uninterrupted completion in a single central pro-

cessor multiprogramming system. One example is the Test and Set

instruction, which indivisibly stores in a processor register an

indication of a field's value while setting the field to a (fixed)

new value. Correct lock management needs some such instruction

because a lock must be indivisibly tested and set, as next shown. A

process wishing access to a lock's domain (1) reads the lock and

examines the value obtained. If this indicates the lock's domain

is accessible, the process (2) writes into the lock a value meaning

"domain in use" to rebuff another concurrent process and then accesses

the lock's domain. If the reading and writing were not indivisible,

two processes could interleave them as follows:

1. process A could do step one;

2. process B could do step one;

3. process A could do step two;

4. process B could do step two.

As a result, the second process would wrongly access the lock's domain

when only the first should have done so. Therefore, to support pro-

grammed lockout, an indivisible locking instruction, such as Test and

Set, must be provided.

In a multiprocessor system, interrupt masking cannot alone pro-

tect critical sections, unless each processor can feasibly disable

all processors' interrupts. Also, in such a system, making a critical

11 Except for interrupts resulting from detection of equipment mal-
function.

29

section a single machine instruction will not assure its indivisi-

bility, if that instruction has multi-word operands, since main memory

interlock denies access to but one word (or core bank) at a time for

but one memory cycle. Consequently, one process can sometimes access

another's operand between memory cycles of the first process' instruc-

tion. The Test and Set instruction, which has a single-byte operand,

has been used successfully, however, as the basic primitive for pro-

grammed lockout in a multiprocessor system.

Storage Protection

Storage protection is another form of hardware lockout available

on many computers. Privileged instructions allow specification of

ranges of main memory locations that a process may not access or that

it may only read or execute. Hardware detects any reference to such

locations in violation of these restrictions. Intended primarily to

prevent erroneous sharing among concurrent processes, storage protection

mechanisms, or modifications of them, could be useful primitives in

certain programmed lockout strategies.

Deadlock

Deadlock occurs when each of two or more concurrent processes

has been allocated exclusive control of a resource needed by another

which it cannot release, and each, to continue, needs at least one

such resource held by another. As a result, none of the deadlocked

processes can complete its operation. Each set of locked shared data

and each critical section, like the storage space it occupies, may

be such a resource.

30

PROBLEMS

System error and system performance problems that can afflict

concurrent data sharing are discussed below in terms of the basic

concepts just presented. First, possible adverse effects of ill-

coordinated data sharing are examined. Next, difficulties that can

result from imposing excessive data sharing controls are reviewed.

Third, we discuss deadlock, a special hazard risked by inappropriate

shared data controls. Finally, we point out a few other miscella-

neous difficulties.

Effects of Ill-Coordinated Data Sharing

Three groups of problems are examined below. In the first, con-

current processes contend to read common data but none modify it. In

the second, one process writing shared data conflicts with others

reading it. In the third, multiple processes conflict while concur-

rently writing the same field or members of intersecting related

sets. As a rule, each group's effects are worse than its predeces-

sor's. In addition, the second group includes the first group's

effects, and third group those of both the first and second groups.

Contention During Concurrent Reading

Two or more uncoordinated concurrent processes that are only

reading common data cannot garble it and will obtain correct re-

sults, provided equipment interlocks work properly. Such processes'

contention may indirectly cause computer system performance degrada-

tion, however.

31

Only the possible adverse effects of read-only data sharing are

discussed here. The benefits, which usually outweigh the costs, are

treated subsequently under PROMISING APPROACHES.

The basic effects of read-only data sharing are those of shar-

ing certain resources. The resources of prime interest to analysis

of data sharing are main memory, auxiliary storage, and the channels

that connect them. Data sharing can impair performance primarily by

deranging storage access patterns planned to reduce average access

time.

For example, several years ago a sort routine was written that

stored partially-ordered sequences on a large disk and repeatedly

read, merged, and rewrote information there. For this disk system

one of four track-to-track access times was possible, depending on

the type of access mechanism motion entailed. The sort contained

an algorithm to select the next track for output which reduced track-

to-track access time substantially below average, when the program

ran alone. When multiprogrammed with other jobs, however, the sort's

performance degraded because extra time was usually needed to reposi-

tion the disk access mechanism after each use by a concurrent job.

Even though these jobs shared no data, they did share a data-

containing device.

Since the concurrent processes in question are uncoordinated,

the usual effect of access pattern derangement is to randomize access,

although worse than random access patterns sometimes reults. As a

general rule, the less uniform the access time to a storage device

is, the more careful programming can improve it and the more unsyn-

chronized data sharing can impair it. Consequently, concurrent access

to data in main memory usually degrades access time only slightly.

32

However, concurrent access can increase total magnetic drum access

time substantially, total magnetic disk access time seriously and

total magnetic tape access time intolerably.

Read-Write Conflict

A single otherwise correct process allowed to alter common

data while other uncoordinated processes read it will normally

change the data correctly, but one or more of the readers may obtain

incorrect results. If, however, these results are used to direct

processing operations, further damage may result. Also, duplicating

results may be impossible: the same processes run at slightly dif-

ferent relative times may yield different results. Consequently,

debugging may be very difficult. Examples illustrate typical

problems.

A process that reads a field while another updates it will obtain

the field's old value if the reading reference occurs before, and the

new value if reading occurs after, the change has been made. Unless

the different processes are deliberately coordinated, the exact order

of their instructions' execution cannot be guaranteed, and so results

will vary unpredictably. Although either result could be considered

correct depending on whether the old or the new value was desired,

such variation could disturb certain operational users and cast

doubt on system correctness, even where systems' requirements allow

such variations.

A process that prepares a summary, or that otherwise examines

more than one field (or the same field more than once) of a file that

another process is concurrently changing, risks more serious trouble:

33

incorrect results. The reader's results may represent neither the

original version nor the new version of the file, if some data is

read before and some after its alteration. If these results are

used to control processing operations, instructions whose execution

comprises a process or processes may be garbled. Through a complex

chain of events thus started, widespread damage to both data and

programs can follow. Alternatively, the effects can be more subtle;

e.g., decreased performance or deadlock.

Concurrent-Write Conflict

An attempt by two uncoordinated concurrent processes to change

one or more fields of their intersecting related sets can also have

serious adverse effects. Such concurrent-write conflict can intro-

duce incorrect values into individual fields and prematurely alter

related sets, causing processing errors during subsequent computing,

retrieval, and updating.

Often a process examines a single field to decide whether or

how to alter the same field or other members of a related set. Error

can occur if another process intervenes between this examination and

the consequent action. Both operations must be coordinated; i.e.,

done within a critical section, to assure correct results. For

example, suppose that an on-line airline reservation system is pro-

grammed to book, if available, the number of seats requested on a

flight, but otherwise to respond that space is unavailable. Further

suppose a specific flight has but one seat left and that agents A

and B each request that seat. As a result process A operates for

agent A's request and process B for agent B's. If the two processes

are interleaved, the following sequence of events could occur:

34

1. Process A loads into an accumulator the flight's seat

count.

2. Process B loads into an accumulator the same seat count.

3. Process A compares the loaded seat count to the number

requested, finds enough spaces, decreases the loaded

count, stores the result in memory, and completes the

availability processing.

4. Process B does the same.

Here process B "errs" because it was allowed to operate during a

critical section. In addition, the file is left with incorrect data.

The problem could occur in a multiprocessor system or in a single

central processor multiprogramming system if an interrupt occurred

after each of steps 1 and 2 and the processes were subsequently re-

activated in the same order in which they were interrupted.

When a related set is inconsistently updated, results can be

more complex. In an indexed file the substantive data items and the

corresponding index fields could be changed inconsistently if all

significant results of one process's actions were not recorded before

another process referred to them. If the second process obtained

portions of an index before the first had revised and replaced it,

the second might either change it wrongly or reference the wrong

serial file field (via an obsolete index pointer). Also the first

process might overwrite the index as adjusted by the second, erasing

the record of the second process's actions. To eliminate risk of

data base damage (and consequent possible loss of processing control)

all concurrent-write conflicts must be avoided.

35

The major adverse effects of ill-coordinated data sharing have

so far been outlined and illustrated in this subsection. These

include potential performance degradation, incorrect results read

when one or more reading processes contend for access with a single

writing process, and inconsistent data when two or more concurrent

writing processes conflict.

Effects of Excessive Data Sharing Control

Three general approaches are commonly followed, singly or in

combination, to avoid the erroneous results of inadequate coordina-

tion, and sometimes to improve performance. First, processes that

might usefully run concurrently are required to run consecutively.

Second, processes are run concurrently but constrained to operate

mainly on distributed data (see p. 38); the identities, storage loca-

tions, types, and amounts of common data permitted are strictly limited.

Third, data locks or process locks are used to force consecutive access

to the intersections of processes' related sets. It appears possible

to classify all known data sharing control methods, good or bad, as

instances of these approaches or their combination.

For any particular application, some well-designed mixture of

these approaches appears to be the strategy most appropriate to

effective data sharing. Some are suggested under PROMISING APPROACHES,

below. However, any one such approach pursued excessively or a poorly

designed combination can cause one or more of the following adverse

effects. Desirable cooperation among concurrent processes may be

prevented. Computer equipment may be used inefficiently. Per-

formance may degrade. Response times may lengthen. Finally, dead-

lock may occur. Several of these practical problems of excessive

data sharing control are illustrated below.

36

Impact of Consecutive Processing

Processing changes and information requests in batches or in

strict succession permits a system to enforce a desirable order on
(3) such inputs. In the SAC Control System (SACCS), for instance,

a batch of changes and information requests is accumulated until

one of three events occurs: (1) a fixed period of time has elapsed,

(2) a critical batch-size limit is reached, or (3) a high-priority

message enters the batch. Any one of these three events will trig-

ger a processing cycle, during which all changes in the batch are

first applied to the data base in a conflict-free order. The in-

formation requests in the batch are then processed to obtain latest

results. Changes and information requests that enter the system dur-

ing processing of one batch are held for the next.

The small batch approach avoids the effects of uncoordinated

data sharing just discussed. Neither write-write, read-write, nor

read-read conflict can occur, provided program logic is correct

and the different types of input in the batch are recognized and

arranged appropriately. The method's disadvantages are basically

those of large batch processing, although smaller in scale: (1) re-

sponses to information requests are delayed while multiple changes

are processed, and (2) the information retrieved is seldom truly

current because it does not reflect unprocessed changes accumulating

for the next batch. As a result the approach is seldom suitable

for systems in which several users cooperate by dynamic interaction

with a shared data base.

These disadvantages can be minimized by reducing batch size.

They disappear in the limiting case, seriatim processing (where

37

"batch size" = 1). Seriatim and very small batch processing may use

computer system equipment quite inefficiently, however. The con-

sequent reduced throughput can cause long queues of changes and

information requests to form awaiting processing and lead to in-

creased response times.

Disadvantages of Data Distribution

A group of fields is said to be distributed or segregated when

it is divided into subsets which are stored sufficiently apart to

allow their uncoordinated access by concurrent processes. Each

segregated subset may consist entirely of unique fields, solely of

copies, or may contain some of each. Whether two fields are dis-

tributed depends on the operations to be performed on them. For

example, two fields in separate core memory banks are distributed

with respect to individual main memory fetch and store operations

but are not necessarily distributed with respect to a block transfer

spanning both core banks.

As discussed below under PROMISING APPROACHES, data distribution

can speed the operation of concurrent processes, simplify their

design, and reduce debugging effort. The approach has certain dis-

advantages, however, noted next.

Distributing data to minimize its sharing can entail redun-

dant operations and increase resource requirements. Separate copies

of data made to avoid access conflicts (1) need additional storage,

(2) require extra execution time to prepare, and (3) may entail

parallel updating. Also, additional computer instructions must be

prepared and debugged to.perform the copy and update functions to

keep copies compatible. Segregated unique fields may require ex-

plicit links to relate them when these relationships might other-

38

wise have been implicit. Such links may also be needed to relate

copies. Finally, excessive processing may be required to reformat

and distribute data; e.g., if each block read were to be dispersed

and each block written collected, during frequently repeated on-line

processing.

Problems of Locking Data

By excessively restricting concurrent access, programmed data

lockout can impair performance and may contribute to deadlock. De-

sign and debugging of reasonably efficient locking procedures is

difficult and complex. Programmed locks need storage, and their

manipulation requires extra instruction executions. These diffi-

culties are discussed next.

Since the precise composition of a related set of data may be

difficult to establish (e.g., because of ripple effects), designing

and debugging an optimal locking algorithm may require substantial

effort. (Ideal locking algorithms would protect exact related set

intersections for minimum times.) Sets of programmed locks may be

required in some cases to release subsets of data no longer needed

and to avoid prematurely locking other subsets, which can cause dead-

lock as well as delays. Even determining exactly where locks are

needed may be difficult. Because related set membership is sensitive

to details of processing, each process may need a somewhat different

optimal locking algorithm, and whenever a process is changed, its

locking algorithm may need to be reviewed for corresponding altera-

tions.

Precision locking may also require the storage of many programmed

locks. Each such lock typically requires several bits of storage

(e.g., a byte, or even an entire memory register to index the queue

39

of waiting processes associated with the lock). Thus, total lock

storage requirements may not be trivial. The mechanisms of effective

programmed lock manipulation are far from simple, either, unless

special locking instructions are provided. Thus, lock management can

contribute to performance problems.

To avoid these complications and especially to reduce develop-

ment effort, cruder but simpler locking schemes tend to be devised in

practice. Unfortunately, these crude methods overlook, thus denying

other concurrent processes legitimate access to shared data and causing

performance degradation or contributing to deadlock. As extreme

examples, the ADEPT-50 executive (under which TDMS runs) locks

an entire integrated data base at a time, and IBM's OS/360 may

lock an entire set of files (called "data sets") for an entire job.

Process locking is sometimes used instead of data locking to

reduce the number of locks required. Although process locking can

sometimes save lock storage and may simplify locking algorithms, it

too can cause overlocking. For example, two processes that could

safely read a common dictionary concurrently may do so only con-

secutively if constrained to access it via a common procedure.

Discovery of efficient generalized precision locking mechanisms

adaptable to program change, or of ways to recompile equivalent

specialized locking mechanisms when altering a program, could greatly

reduce the tendency to overlock and would thus contribute substantially

to more efficient multiple user computer system design.

40

Deadlock

Deadlock is one of the most serious potential effects of in-

appropriate locking algorithm design. Deadlock has been well des-

cribed by Havender, and Habermann has outlined a way to avoid

it in some cases. There seems considerable current professional

interest in the subject, so one may expect improved methods to be

developed and published in the near future. The methods now known

are either restrictive or complex and time-consuming to

implement and execute, especially if the number of elements (e.g.,

lock domains) is large.

Where a system design does not include a foolproof deadlock

avoidance algorithm, the problem may occur often or rarely, under

conditions difficult to predict exactly. Overlooking may cause

deadlock among processes that would otherwise be more likely to

operate without interference on logically independent subsets of a

set of data. On the other hand, more precise locking might allow

certain processes to begin concurrent operation, only to become

deadlocked later over other serially usable resources.

Deadlock can also be hard to detect. For example, in a multi-

programming system running three concurrent processes, if two become

deadlocked, but the third does not, the problem may go unnoticed for

quite a while. What to do when deadlock is detected is also far

from clear. In theory, an operating system could abort deadlocked

processes one by one, releasing at each stage resources that might

allow one or more of the remaining processes to continue. This

approach is not feasible, however, without giving the operating

41

system information normally not available, about the relative worth

of the deadlocked processes, and the probable effect of aborting

each on the continuance of the others and on any files it may be up-

dating. Most important, to abort any writing process risks garbling

the data base. This is generally an intolerable risk. Because of

these difficulties, development of better avoidance algorithms

appears more fruitful at this writing that pursuit of schemes to de-

tect and break deadlock after it occurs.

Other Problems

Data sharing can aggravate other problems that arise in a

multiprogramming environment, although it does not cause them.

These are the problems of version identification, audit, debugging,

and restart. In each case data sharing aggravates the difficulty

by introducing multiple possible sources of change, inquiry, and

error which are absent when one process at a time refers to data.

These problems are mentioned here because they must be dealt with

satisfactorily in any system employing shared data.

PROMISING APPROACHES

In this subsection we mention informally several promising

general approaches to further research into data sharing control.

Subsequent research effort should pursue them more deeply, although

other worthwhile approaches undoubtedly exist. The approaches sug-

gested below have neither been developed in complete detail nor sub-

jected to thorough evaluation and trade-off analysis.

42

An ideal data sharing strategy would fully protect common data

from inconsistent alteration, and reading processes from inconsis-

tent results, while minimizing interference and avoiding deadlock.

Earlier, three basic approaches to data sharing control were sug-

gested, and their problems were discussed: (1) consecutive proces-

sing, (2) data distribution, and (3) data and process locking. We

now suggest several strategies based on them, stressing advantages

instead of difficulties, many of which have been already discussed

under PROBLEMS.

Consecutive Processing

Consecutive processing avoids conflict over common data by

separating in time all occasions of shared data access. Either of

the two general approaches discussed below may be valuable in parts

of certain applications. A third approach, seriatim processing,

can seldom be afforded in any system involving multiple concurrent

users.

Maximum Use of Off-Line Processing

Certain functions associated with a multiple user on-line

computer system can usually be done off-line, in advance of concur-

rent on-line access, using well-known batch processing techniques.

Examples of functions often appropriately performed off-line include

initial preparation of computer program and data files for on-line

use, their subsequent restructuring, and regular massive data file

updating. As a rule the more such functions can be done off-line,

the simpler and more effective the on-line system. For example, if

a system's requirements allowed performing all updating off-line in

43

nightly batches, its daily on-line use would reduce to retrieval,

and its data sharing problems to contention associated with concur-

rent reading, a relatively trivial difficulty.

Batch processing has tremendous potential advantages wherever its

usually excessive response times can be tolerated. First, operational

control, version control, and program logic can together prevent incon-

sistent updating. Extensive error checking is feasible. For example, a

control field in each transaction can be summed and compared against

a prelisted batch control total, with batch rejection and detailed

investigation of the cause following on disagreement. This technique

is commonly used to detect replicate or missing transactions. Trans-

actions affecting multiple data base records can be transformed

into several simple transactions, each affecting only one data base

record. Multiple changes to the same record can be sorted for applica-

tion to the data base in any desired order; in particular their time-

consistent application can be assured. Other consistency checks (e.g.,

for duplicates, for illegal sequences of transaction types) can also

be built easily into batch update program logic.

Second, the same mechanisms can segregate a batch's changes

from its information requests, so all changes to a record precede

any information request involving that record. Thus, time-consistent

retrievals, summaries, and other analyses of a file can be guaranteed.

Third, the multiple information requests for a batch can be

expanded, reformatted, and sorted for optimum retrieval efficiency.

Thus, batch processing can be designed to preclude performance deg-

radation resulting from contention during concurrent reading.

44

Fourth, the methods of interference prevention just outlined pre-

clude any need for programmed locks and thus avoid the overhead and

other problems normally associated with their use. They also preclude

deadlock.

Fifth, the batches' transactions and the saved source data base

(or the corresponding checkpoint data if file maintenance is destruc-

tive) are preserved, and available to repeat updating and retrieval;

e.g., for data base reconstruction, audit, or more dynamic debugging

investigations.

To summarize, batch processing procedures enforce certain

principles essential to satisfactory data sharing. These are:

1. correct order of operations;

2. time-separation of indivisible operations;

3. efficient order of operations;

4. precise identification of events and accountability

for actions; and

5. reproducibility of results.

Small-Batch Processing

The long response times that result from processing large

batches can often be cut by reducing batch size, provided the updat-

45

12
ing method does not reproduce the data base. Where a batch size

can be selected that will yield both satisfactory throughput and

acceptable response times, small-batch processing is a proven, effec-

tive way to avoid data sharing problems. Variations of the SAC Con-

trol System's method discussed under Impact of Consecutive Processing

may reasonably determine batch size. Allowing a priority message to

terminate a batch risks degeneration into seriatim processing, however,

unless priority assignment is carefully controlled. Also, because

batch processing efficiency tends to diminish as batch size decreases,

small-batch processing will not necessarily yield both adequate

throughput and response times short enough to satisfy application

requirements.

Data Distribution

Data can be partitioned in several ways prior to high-frequency on-

line use to avoid or at least reduce concurrent data sharing and its

problems. One technique stores separately data that may change during

a period of concurrent sharing from read-only data, permitting concur-

rent reading of the latter. Another (complementary) technique sepa-

rates private data from data shared concurrently among different pro-

cesses. A third method replicates common data so that each process

12 One of two alternate methods is used in batch updating. In the
first, termed reproductive file maintenance, a complete copy of
each updated file is written in a storage area distinct from the
source data base. In the second, non-reproductive file maintenance,
the source data base is merely altered in place. Reproductive file
maintenance preserves the source data base as backup data while
non-reproductive file maintenance destroys it. Nevertheless, re-
productive file maintenance is a very slow way to do small-batch
updating, because the entire set of altered files must be written
during each batch's processing.

46

may access a copy more freely. All tend to minimize the scope, com-

plexity, and interference of programmed lockout, and may contribute

to more efficient storage utilization. (Disadvantages of Data Dis-

tribution, above, mentions corresponding problems.)

Segregating Read-Only Data

It is often possible to design an application so that much of

its data (e.g., the geographical location of cities, aircraft perform-

ance data) is not subject to change during a period of multiple con-

current use. Not only large sets of data (e.g., reference tables),

but also certain fields of typical records may never be altered

by any process invoked during such a period, although some of these

fields may be changed on other occasions. Segregating (e.g., into

distinct files or subfiles) and reformatting most of this read-

only data can simplify concurrent on-line processing.

Apart from easing data sharing there are many advantages to

storing read-only data separately from alterable data. For instance,

read-only data can often be formatted more efficiently than alter-

able data (e.g., organized for more efficient search, blocked without

spare space) because ease of updating can be ignored. Also, seg-

regated read-only data can be omitted from checkpoints, provided its

original source is available for restart. If the volume of such

segregated data is large, considerable checkpointing time can be

saved.

Segregating common read-only data can be especially valuable.

Read-only data may require storage protection against inadvertent

change but needs no programmed lockout to avoid error. Any number of

processes may freely access common read-only data concurrently with

no risk of error.

47

How "far" from other data to store segregated common read-only

data depends on the types of protection and access conflict avoidance

desired and on characteristics of the storage devices and access mech-

anisms used. Since the entire contents of a main memory register is

fetched, stored, and interlocked as a whole, segregation at least by

word is normally required. Main storage hardware read or write protec-

tion must typically be applied indivisibly to groups of consecutively

addressed memory registers; e.g., modulo 512-word groups. To protect

read-only data against accidental writing in such a main memory would

require storing it in one or more such groups of memory registers,

distinct from others storing alterable data. On auxiliary storage,

segregation of common read-only data in blocks distinct from blocks

containing other data generally contributes both to ease of access

control and to reduced contention.

Removing segregated read-only data from the scope of Imprecise

programmed locks is trivial. Consequently processes cannot be slowed

in accessing such data by imprecise programmed lockout intended to

control access to other data. Nor can deadlock occur over segregated

read-only data because no process is prevented from reading it. By

storing elsewhere the read-only data items, the storage organization

and logical relationships of the remaining writable data may some-

times be simplified, permitting consequent simplification of the

locking mechanisms controlling it.

Contention (e.g., for main memory access) inevitably results

from concurrent access, but (for data stored in main memory) other

advantages usually outweigh its costs. For example, to share a

single main memory copy of a table read by two concurrently executing

programs may take less total elapsed time than to transport it twice

from disk. Further, sharing the single copy will consume fewer

48

memory cycles than first copying it to a separate main memory area

for separate reference, unless both processes use the common table

intensively and unless the copy and the original can be stored in

separate core banks to avoid secondary interlock. More important,

when too little main memory is available to replicate common read-

only data, the ability of processes reading it to run concurrently

at all may depend on their right to read the same copy.

In applications involving many concurrent on-line users, similar

processes (e.g., translation of information requests, preparation of out-

put in similar form) must often be run for each. Hence, much of the data

they need can often be formatted as common read-only data. In such

situations data sharing may satisfactorily substitute for increased

main memory capacity, whose acquisition may be technically or econom-

ically infeasible.

Partitioning Common and Private Data

If each process' private data is segregated from common data,

each process can access its private data without programmed lockout

and its disadvantages. These different processes may use the same

or different routines. For example, different processes assigned

to update separate subsets of a geographically organized file may

apply the same routine to distinct groups of fields. On the other

hand, different routines may be used to update data in separated

financial and personnel subfiles.

Well-known buffering techniques perhaps best illustrate the

advantages of segregating private data. If one process assembles

data for output a block at a time in some fixed main memory area, and

then initiates a block transfer (a channel process) to move it to

49

auxiliary storage, the first process must wait for the block transfer

to end before starting to prepare the next block. Otherwise the

first process may incorrectly write into main memory registers not

yet read by the channel process. If the first process copies an

assembled block to a separate buffer area from which the channel

can transfer it, however, the first process can prepare the next

block in the original area while the channel operates on the first

block. Even the copy time can be avoided if the memory areas allo-

cated to data assembly and output are alternated, as in double-

buffering.

Hardware storage protection, if available and sufficiently

flexible, may be feasibly applied to segregated private data to

prevent erroneous access by other processes. Also removing private

data from the scope of programmed locks could simplify lockout design

and operation for the remaining shared data.

Control of the remaining, common, data can sometimes be simpli-

fied, and interference due to programmed lockout may be reduced, if

data common to each pair of processes is segregated and locked

separately from data shared by more than two concurrent processes.

This approach can be pursued further, to segregate and separately

lock the data shared by each triplet, quartet, etc., of concurrent

processes. At some point, however, the strategy's complexity de-

feats its advantages.

Replication

Under some conditions net improvements in processing time and

programmed lockout simplication may result if data common to two or

more processes is replicated, so that each process can use its own

50

copy, or so all read-only processes can share a copy, without ex-

plicitly synchronizing each reference with those of the others. A

process using such a copy can escape the problems of programmed lock-

out provided the data are not used to communicate with other processes.

Replication is most valuable to ameliorate read-write conflicts

by allowing one or more read-only processes overlapped or interleaved

access to the intersections of their related sets with that of exactly

one writing process. When but one copy of such an intersection must

be shared, to avoid inconsistent reading results the process wishing

to write must wait for all readers to finish. Similarly, while the

writer has access all readers must wait. If, however, two separate

copies are made available, the readers can safely access one while

the writing process alters the other.

For example, the use of alternate copies of a file to permit

safely overlapped retrieval and updating during small-batch processing
(3) has been suggested as part of SAC Control System upgrading. Here

the current version of the file would be preserved throughout each

processing cycle, which would produce in a distinct storage area an

entire new version of the file reflecting the batch's changes. Mean-

while the batch's information requests would be processed against the

current version, concurrently with updating. Results of information

requests would thus reflect the current rather than the latest copy

of the data base, but would hopefully be available sooner, since the

wait for update completion otherwise required would be avoided. The

method's other advantages include simplified checkpointing and a

less complex file structure than alternatives such as one discussed

below.

51

The approach just outlined requires copying the entire file

during each small-hatch processing cycle, a time-consuming opera-
12

tion. It would also almost double the file storage space otherwise

needed, assuming but two versions of the file would be kept at any

time. For typical small-batch processing these difficulties would

almost always outweigh the advantages.

(12)
Variations of an approach suggested by Waghorn, involving

selective replication, appear to merit investigation. Essentially

the method would require time-tagging each file record and each change

or information request. During updating each modified file record

would be marked with the current time, and multiple versions of just

those records subject to reference by retrieval requests pending or

in progress would be retained. Each retrieval process would use the

version of a referenced record last prepared before the retrieval's

inception. When through with an old version of a record, a retrieval

process could release it (causing it to be purged from the file), pro-

vided no incomplete retrieval needed it. To supplement elimination

of old records during updating or retrieval, optional scavenger pro-

cesses could be run periodically to purge the data base of extra

record versions no longer needed to satisfy incomplete information

requests.

In effect, the method would retain at a low storage cost a version

of the file to supply each information request with data current as of

the request's initiation. Properly implemented, it could substantially

reduce programmed lockout between change and retrieval requests,

especially where numerous slow multiple-field retrieval requests

would otherwise frequently lock out update access. The method's

major disadvantages should also be noted, however. It would sub-

stantially complicate file structure and would increase dynamic

52

storage management requirements. It would also complicate and slow

both update and retrieval processes, requiring them to sometimes

search through multiple versions of the same record (in-line or via

chains). These disadvantages should be traded off against the

advantages in the light of particular applications' needs.

Replication is seldom appropriate to bypass concurrent-write

conflict, however. If different changes were applied concurrently

to separate copies of current data, the differently altered copies

would need frequent collation to preserve their consistency. To

avoid read-write conflict an additional read-only copy would be

needed, as discussed above. The collation processes entailed could

easily consume all time saved by separate updating. Such distributed

updating could also cause incorrect updating results, since the occur-

rence of some changes can affect the processing of later ones. To

apply all changes in parallel to all copies of replicated data would

replicate the processing load (unless such parallel updating could

be done by appropriate parallel processors). Thus, replication to

avoid concurrent-write conflict would seldom be practical.

Replicating read-only data is seldom worthwhile, either. As

stated under Segregating Read-Only Data, replication costs copy time

and requires extra storage, not always available. Read-only data

replication in main memory seldom significantly improves overall

efficiency because the storage access conflicts avoided rarely

justify the replication costs. Also, unless the copies are stored

in separate (core) memory banks, secondary interlock will prevent

any improved core memory access time.

Replicating certain frequently loaded read-only data in inde-

pendently accessible auxiliary storage devices may avoid enough con-

53

tention over a common storage device to justify its costs. In this

case however these advantages and costs should he compared to those

of other alternatives, such as use of a single fast auxiliary

storage device for such data.

Combining the Data Distribution Approaches

The three techniques just outlined could be combined advanta-

geously in some systems. For example, an on-line computer program

design might provide for the following organization of data in main

memory, perhaps accomplished by reformatting data as they were read

into main memory.

1. A single copy of all read-only data common to two or more

concurrent processes would be stored, segregated from all

other data and hardware-protected against erroneous writing,

2. Each process' private data would be segregated from common

data and from every other process' private data. Storage

protection mechanism design permitting, each such set of

private data would be hardware-protected from accidental

read or write access by any other process.

3. Except for certain data needed for inter-process communica-

tion, the remainder (i.e., alterable data common to two

or more concurrent processes) would be replicated selec-

tively as outlined in preceding paragraphs. Thus each

read-only process could access a de facto version of

the data base current as of the reader's inception.

54

Programmed lockout would be needed only to force consecutive access

to the subset of the data base alterable by two or more on-line

processes, or data alterable by at least one such process and also

read by at least one other process unable (for whatever reason) to

read a copy.

Summary

All approaches to data sharing control thus far discussed are

ways to avoid programmed lockout altogether or at least to reduce its

scope. After all such approaches are applied there may still be a

residue of data that must be locked: data shared by two or more con-

current processes and alterable by at least one of them. Also, it

may sometimes be preferable to lock certain data than to incur the

costs of replicating it, otherwise segregating it, or grossly con-

straining its use to sequential processes.

It appears possible to group all promising approaches to more

effective lockout now known, including both process and data locking,

into two subsets: (1) lockout scope reduction techniques, and (2)

lockout mechanism improvement methods. The proposed work program

will address these topics.

55

SECTION III

OPERATIONAL PROBLEMS AND SOLUTIONS

INTRODUCTION

Approach

In Section II, potential problems in shared data use are dis-

cussed from the point of view of- the data processing system designer.

Section III reviews these problems in slightly different ways:

(1) from the point of view of the system user (customer, operational

user) as they affect his total operation including both the data pro-

cessing system and its environment, and (2) in a cursory review of

actual or proposed systems in search of actual occurrences of these

problems or methods used to prevent or allay them. Thus, Section III

deals with user procedure problems (as defined in Section I) rather

than system error or system performance problems.

In this section, "users" will refer to the people who make opera-

tional use of the products of a data processing system, control the

character and quality of its operational inputs, and in general, con-

trol the environment within which the data processing system operates.

They are distinguished from those concerned only with design and with

proper and efficient operation of the data processing system. "Data

processing system" will mean the complex of equipment, operators,

operating system, data management system, and application programs,

which in toto perform data processing operations.

56

Summary

A data processing system can be alleged to have user procedure

problems whenever its users make an unduly large number of mistakes,

perform inefficiently, or express substantial annoyance with system

behavior, even though the system operates correctly and rapidly enough

as measured by its specifications. In general, the trend toward high

performance systems that process large data bases quickly with real

time input/output streams, multiple on-line terminals, complex file

inter-relationships and high reliability requirements, leads to a great

increase in all potential shared data problems, including user pro-

cedure problems that result in part from users' reduced ability to

understand what a system is doing. The situation is exacerbated by

uuiicurrent attempts to gain economy in program preparation or effi-

ciency in use of resources through the application of computer pro-

grams such as standard operating systems, generalized data management

systems, and time-sharing monitors. These programs are generally

more susceptible to shared data problems than the consecutively

operated specialized programs which characterized some of the earlier

high-performance real time systems. (The latter also generally opera-

ted on much smaller data bases and had much less flexibility.)

On the other hand, although operational requirements Imposed by

the user often lead to system designs with a high problem potential,

such operational constraints can also either prevent or alleviate

problems, or else determine the solution. User procedure problems

can be solved, or solutions can be attempted, at three levels:

(1) changes in procedures, (2) a redesign of the overall information

handling system (including communications as well as data processing) ,

or (3) redesign of the computer programs to prevent or ameliorate the

occurrence of such procedural problems outside the system.

57

The results of our brief survey can be easily summarized: data

sharing has not generally, in the past, caused serious problems.

Known occurrences, and specific design activities to prevent such

problems, are few. The reasons for this are fairly clear: (1) vir-

tually no operational multiprocessing systems have actually run in a

multiprocessing mode on significant problems, (2) few operational

multiprogramming systems have used true shared data bases, and (3) in

the systems where shared data problems could occur, they may have been

prevented by operational procedures or constraints external to the

data processing system, but not expressly designed to prevent shared

data problems. Shared data problems will become more critical in the

near future, however, as requirements to process large data bases

quickly, in real time high performance systems (e.g., FAA/NAS, AABNCP,

MACIMS), lead to increasing reliance on multiprogramming involving

extensive concurrent data sharing.

USER PROCEDURE PROBLEM CHARACTERISTICS

An example, commonly given, from the airline reservation busi-

ness illustrates user procedure problems. Mr. Able at the AMEX office

requests space on Eastern flight 551 to Washington. One space is

available, and a reply goes to AMEX stating so. Meanwhile at MITRE,

the same request is sent in and the same answer is received. AMEX

sends in a reserve order, followed by MITRE. MITRE, of course,

receives a reply of "no more space" and is disappointed (assuming

the data processing system is working properly and uses first-in-

first-out (FIFO) request queuing). The point illustrated is that

although the situation is irritating to one or many customers, and

may result in overall system degradation as re-requests, rejections,

and other associated messages follow each other around and clutter

up the system, the operations of the data processing system are per-

58

fectly correct and its performance is not necessarily degraded from a

strictly data processing point of view. The system is just pro-

cessing unnecessary data as a result of a user procedure problem.

Alternative Solutions

Three types of solutions to user procedure problems were suggested

above: (1) procedural changes, (2) overall information handling system

design changes, and (3) data processing system design changes. The

following illustrate each kind of solution for the airline reservation

system example: (1) send in only positive reservation requests rather

than simple availability requests, (2) add buffer storage and batch

requests external to on-line system operation, assigning tentative

space reservation to the first request and deferring response to the

second request until confirmation of the first, and (3) flag the

data base element with a tentative reserve and lock out subsequent

requests until the first is resolved.

Operational Constraints

In an investigation of techniques for resolving shared data prob-

lems, one goal should be to make more explicit the relationships or

trade-offs between operational constraints and major system design

characteristics. In some cases the operational requirements may lead

to system solutions which are particularly prone to shared data prob-

lems. For example, the need to make a wide variety of flexible,

quickly set up queries on a large data base may lead to generalized

file structures very susceptible to error if accessed concurrently

(as in SACCS/DMS). The demand for better real time performance may

lead to multiprocessing as a way to increase processing speed (as

in the FAA/NAS), with a higher probability of concurrent access.

59

The importance of operational constraints, and the effects of

altering them on data processing system design and behavior, are not

always appreciated. Several examples illustrate this point. As

mentioned above, in earlier real time programs (e.g., SAGE and BUIC) ,

the need to get maximum speed out of a single central processor system

(among other considerations) led to rigidly sequenced program control,

leaving no room for random program operation resulting in data shar-

ing errors. Discussion of the SACCS system later in this section

mentions that the need for efficient processing of inputs led to

buffering and batching of updates, reducing the potential for data

base errors since updating is completed before further queries are

processed.

In development of a tactical system an even more radical sort

of operational constraint was considered. In this system, one class

of input, weather, is so important and may modify so many outputs,

that a mode of operation was considered in which if a weather input

had come In, outstanding or in-process queries would have been de-

layed until the weather input could be incorporated in the data base.

In other applications, one use of the system may be so infre-

quent in relation to other competing uses, that procedural constraints

can be imposed on that use without degrading system performance too

much, even though they might not generally be desirable. An example

of this may be the NMCS-NIPS use of on-line terminal queries, which

lock out files from access by the update programs. In this system,

on-line terminal operations are infrequent and low in volume in com-

parison with the off-line batch processing operations. Thus, restric-

tions imposed only during their operation may not degrade overall

performance excessively.

60

In most current system development activities we no longer start

from scratch but are constrained by an existing system and its

historical development. In only a few cases are we actually allowed

to design or drastically redesign a "total system", but instead deal

only with some vertical or horizontal slice such as a new data proces-

sing facility. Such requirements to mesh with existing systems and

established procedures comprise a major class of operational con-

straints.

Importance of Operational Considerations

User procedure problems are extremely important for two reasons,

both inherent in the fact that the real system to be designed or al-

tered at the start of a development project is the total information

handling system applied to a given set of functions. First, in future

development projects, the solution to a problem may be accomplished

either within the data processing system or through external pro-

cedures. System designers aware of applicable techniques in both areas

may be able to trade them off advantageously. Second, in certain ex-

isting systems, potential shared data problems were prevented by pro-

cedures external to the data processing system. It is most important

to note that these procedures may not have been designed to prevent

such problems, but may have been implemented for other operational

reasons entirely (e.g., organizational relationships, security, re-

sponse time, processing efficiency). Again, they may just have been

established arbitrarily that way during the evolutionary development

characteristic of most systems. There is a general need to develop

more explicitly the ways in which the user's requirements and con-

straints affect the choice of system configurations, the resulting

potential for shared data problems, and the related costs and benefits

involved in relieving them in alternative ways.

61

SURVEY OF DATA SHARING IN EXISTING SYSTEMS

This survey is a quick look at the state of data sharing in early

1971. It involves two levels of investigation. One level examines

the facilities built into existing systems to prevent shared data

problems (i.e., lockout facilities). Another (and much more diffi-

cult) level surveys the users to see how these facilities, or other

means, have actually been used. Determining whether shared data

problems have actually occurred or have been designed away in

advance entails detailed discussion with operators on specific

applications and may involve decisions which were implicit and not

documented. The present report is based only on readily available

knowledge of systems and to a lesser extent, on applications.

Types of Concurrent Data Sharing Systems

Preliminary investigation has identified several types of exist-

ing or planned data processing systems in which concurrent data sharing

problems could occur or in which mechanisms for avoiding or ameliorat-

ing such problems have been incorporated. These are (1) computer

operating systems, (2) generalized data management systems with on-

line capabilities, and (3) certain application-specific programs.

All are of potential interest to the Air Force. Some are part of

current or planned Air Force applications. Examples of each type

are listed below, and some are discussed more fully subsequently,

where documentation is available.

In discussing the operating systems and generalized data manage-

ment systems we can only define their potential for shared data problems

and the methods or facilities which they provide which might be used

62

in solutions in various applications. Several of the application-

specific programs should be studied in more detail to determine prob-

lem occurrence and solutions. As pointed out under Importance of

Operational Considerations, to determine the shared data character-

istics of actual applications may be quite difficult due to lack of

documentation and to the fact that the problem may have been resolved

in the operational environment of the user rather than explicitly in

the data processing system.

Specific Examples

Operating Systems

OS/360: Developed by IBM for single central pro-

(MVT) cessor System/360 computers, OS/360 includes

a multiprogramming option with dynamic core

allocation (MVT). MVT has been further modi-

fied for use in a multiprocessing mode (see

M65 next).

M65: An experimental modified version of OS/360 MVT

that controls dual IBM 360/65s in a multiproces-

sing mode.

ADEPT A time-sharing operating system developed by

Executive: System Development Corporation under ARPA

sponsorship that controls a single central

processor IBM System/360-50 computer.

GECOS-III: A GE-developed operating system used to control

GE 635 computers.

63

Generalized Data Management Systems

NIPS: A group of computer programs, developed by IBM

for the Department of Defense (DoD), oriented

to batch maintenance and batch retrieval of

large files; originally restricted to off-line

operation, its IBM System/360 version has

recently been upgraded to include limited on-

line capabilities.

TDMS; A time-shared data management system, developed

by SDC, which operates under control of the

ADEPT-50 operating system.

GIM: A group of general purpose data management

programs developed by TRW to run on IBM

System/360 computers.

Applications

SACCS: The SAC Control System - a communications and

computer complex applied to quick response

control of SAC forces. The part of the system

of immediate interest is an experimental on-

line data handling and display facility provided

by a modified version of TDMS called SACCS/DMS.

NMCS: The National Military Command System in Washington,

which includes a data handling facility using

the IBM System/360 version of NIPS with on-line

terminal update and retrieval capabilities.

64

ANSRS: A Defense Intelligence Agency (DIA) system for

on-line manipulation of large and small data

files to support intelligence analyst activities,

implemented on GE 635 equipment using an exten-

sively modified version of GECOS-III.

FAA/NAS: A recently installed Federal Aviation Agency

real time air traffic control system which

operates on IBM 9020 computers, special versions

of IBM System/360 machines, in a multiprocessing

mode.

AABNCP, These are planned command control systems under

MACIMS: development by the Air Force in which the design

approach to shared data problems should be sub-

jected to continuing investigations as the design

process continues. Both systems may include

multiprogramming and multiprocessing capabilities

with large shared data bases. Present designers

of both systems are aware that potential shared

data problems exist, but specific solutions

have not been developed.

Discussion

Operating Systems

The OS/360 Job Control Language

trol and limited data sharing

(16) provides for data base con-

This control occurs at the job
(9) level and is designed primarily to avoid deadlock. To OS/360

the major defined unit in the data base is the "data set", roughly

65

equivalent to a file in other systems. If a processing program is

to use a data set, the latter must be represented by a data defini-

tion (DD) statement in the job control set for the program. The DD

statement controls the handling of new input data, access to existing

data, and data output or modification. A DD statement parameter,

"DISP" specifies the data set status and disposition. Several

values of DISP pertain to existing data sets: The key value is "SHR",

which is relevant in multiprogramming modes. If DISP = SHR, the data

set may be accessed by other concurrent jobs. However,

"Once a data set has been given the status of SHR, every

reference to that data set within the job must specify the

same status or the data set is considered unusable to con-

currently operating jobs."

(15) The M65 multiprocessor operating system designers were very

sensitive to the problem of multiple use of control routines and

control data, and thus lockout of control routines is included as

one of the major changes to OS/360 MVT. Indeed, the designers state

"The problem of lockout pervades the entire system and is crucial from

the point of view of system performance". For example, to prevent

erroneous operation of control routines

"at strategic places in the control program, the processor

will test a flag in main storage (the "lock") to determine

if...it must wait for the other processor to complete its

execution of the code".

Note that this lock controls program execution (i.e., a critical

section) rather than data access as such. The more general problem

of controlling concurrent access to a shared data base (outside the

66

control programs) is not specifically treated in M65 per se. Preven-

tion of erroneous control program execution is obviously critical to

multiprocessor operating system success; in a parallel way, the

successful operation of some data sharing application may be equally

dependent on similar control of the use of common data.

The GECOS-III time-sharing system provides a facility to state the

intent of a program to "CHANGE" a file and allows any other programs

access to the file unless a program having a CHANGE status for that

file is operating. In GECOS-III, permission for different users

to read or write can be attached to any file's "catalog":

"Multiple concurrent readers (or executors) of a file are

allowed by the file system, but any other combination of

access-modes are mutually exclusive. The file system accepts

or rejects subsequent access-requests for the same file,

based on the permlssion(s) requests by the initial accessor

of the file."

Rebuffed requestors must try on their own initiative to get access

again; the system does not provide for queuing and retrying rebuffed

requests. Also, in GECOS-III, lockout occurs at the file level. As

Section II mentioned, such gross lockout can often deny legitimate

concurrent access.

Generalized Data Management Systems

Some data management systems, although designed for time-shared

use, avoid concurrent access by effectively completing each task

before processing the next. ADAM and GIM are representative

of this approach. They essentially allow only "single-thread" proces-

67

(181
sing. NIPS ' allows multiprogrammed (but not concurrent data sharing)

operation. Only one on-line user at a time may access a TDMS data base,

because an entire TDMS data base is stored in a single ADEPT file,

and the ADEPT Executive allows only one user at a time to access a

file. Data management system application to specific problems is

discussed below.

Applications

One major SACCS data handling application has recently been con-

verted from locally generated programs to a more generalized data

management system (but not yet installed), using a version of TDMS
(19*)

drastically modified to meet SAC requirements, called SACCS/DMS. '

Application of TDMS to the SACCS problem offers some insight both into
(3) the initial design approach and into the handling of shared data

problems in a real operational environment. The initial problem was

to apply a general-purpose time-sharing data management system to a

real time operation with rigorous response time requirements; a wide

but known set of functions; and highly structured data inputs, files,

displays, and reports. One significant conversion problem was to

improve the data management system's response time in processing the

high rate of inputs possible under conditions of great activity.

Another was to prevent a shared data problem arising from non-

synchronous file updating and retrieval.

High-volume file updates are processed in batches, either off-line

(using the MAINTAIN module) or on-line (using the RAPID UPDATE module)

from buffered data received from the communications system. "Single-

thread" updating using the DYNAMIC UPDATE is also possible. Output

requests for displays or hard copy are processed as received, one at

a time. SACCS/DMS uses a hierarchical, "inverted" data base structure

68

with many tables cross-related by pointers. As a result, changing the

data base during concurrent assess by another program could cause

errors not only in individual data items, but in the control tables
14 giving access to them. One proposed solution was to buffer updates

and any retrieval requests until the update request presently being

processed was completed. Purely from the point of view of successful

system operation, this interlocking could be performed at the lowest

level of "complete" data base operation, perhaps one message entry.

In actual operation response time requirements for efficient up-

date program execution led to batching of updates, resulting in a

system of update, retrieval, update. It should be noted that this

mode is forced on the system by operational considerations (response

times and system performance), rather than by data sharing requirements,

An alternative to speed retrieval was suggested in the TDMS Capability
(3) Study and discussed in Section II: a dual file system. That is,

a duplicate set of tables would be saved for retrieval while updating

was in progress. Besides its expense in storage and copy time, the

method would have raised an operational question: would a user not

want to wait for update completion rather than retrieving what might

be out-of-date data? For whatever reason, the suggestion was not

applied. As actually implemented SACCS/DMS is driven by an inter-

face routine which queues all requests and presents them to SACCS/DMS

for seriatim processing.

In the NMCS IBM 360 NIPS installation batch processing is multi-

programmed with on-line terminal retrieval from the same data base.

A potential for shared data problems exists since equivalent sets of

14See(3> p. 32.

69

NIPS programs may be operating concurrently, one servicing a batch

job and another the on-line terminals. The current operational

solution is to allow only one on-line terminal at a time and to lock

out any file being referenced by the on-line terminal. The on-line

capability is an "add-on" to the basic NIPS facility and may not

represent optimum design. Use of the on-line capability is limited

in relation to the total volume of transactions, mostly batch updates

and large scale retrievals, so that restrictions imposed by on-line

lockout may not cause significant performance degradation.

The ANSRS system was developed by the Defense Intelligence

Agency (DIA) to provide an analyst with on-line file modification and

retrieval capability. ANSRS is a multi-terminal system Implemented

on GE 635 equipment using a modified GE Time-Sharing System under

GECOS-III. It is interesting to note that DIA replaced the GECOS

file manipulation routines with a subsystem called RAMS (Random-

Access Management System) because of weaknesses in GECOS' security

provisions. RAMS lets the systems programmer assign a unique identifier

to each unit of information filed by the system and allows that data's

subsequent manipulation by name. RAMS is designed to operate in a

multi-user environment and furnishes certain data set and file inter-

lock facilities. The system will protect data at the record level.

That is, users may concurrently access the same data set, but the

system locks their access sufficiently to maintain integrity at the

record level.

The FAA/NAS system encountered a significant threat to data

integrity resulting from simultaneous use of common data areas. Lock-

ing was instituted to overcome this problem. Locking in turn caused

system interference because subprograms requiring the use of a common

data area were delayed by current users. The effect of data locks
(21)

was also a subject of the NAS simulation study.

70

In the WAS System both "monitor locks" (i.e., locks of critical

sections of the controx program) and common data area locks are defined.

Both represent resources that cannot be duplicated and to which only serial

access is allowed. Monitor lockout is generally of short duration but

common data area lockout can persist for a long time and represents

"...the most critical system resource". The simulation study

indicated that "ultimate system capacity is directly dependent upon
(21)

the ability of the software to eliminate and reduce locks".

As one of the first true on-line multiprocessing systems with a

high potential for shared data problems, this system should be investi-

gated in depth during subsequent shared data research.

71

SECTION IV

WORK PROGRAM

OBJECTIVES

The prime objective in carrying out the activities indicated

below is to help system designers provide data sharing capabilities

in multi-user and multiprocessor systems which operate efficiently

and correctly. To meet this objective, it is necessary to provide

guidelines to system designers for determining the extent to which

data will be shared, the potential conflicts in the use of shared

data, and the impact of various solutions for correct management of

shared data on the system design methodology as well as the system

performance. These objectives and the research planned to meet

them are discussed in subsequent subsections. The corresponding

activities and planned products are next summarized.

To determine the extent to which data will be shared within a

computer system, methods will be developed to identify critical

sections of processes, the processes' related sets, and the potential

related set intersections. A technical report will be produced des-

cribing these techniques, and illustrating them with concrete MACIMS

application data.

To control the correct use of shared data requires investigation

of techniques for managing shared data, including various locking

methods. Several such methods will be described and modeled in soft-

ware or firmware. Their costs in storage space and execution time

will be formulated, and their potential for deadlock evaluated. A

72

technical report will summarize the results of this work, and will

outline the better deadlock avoidance algorithms and their relation-

ships to different data sharing techniques.

To determine the impact of various approaches to data sharing

management is a far more ambitious goal. Consequently, the approach

will be illustrative rather than synoptic. A series of several

technical reports will be produced. One such report will discuss

selected cases, in each case analyzing the impact of different data

sharing disciplines on system design, system performance, and user

procedures. Other technical reports will discuss the primitives

needed for effective data sharing control, how they should best be

incorporated into a system of programs designed for effective data

sharing, and how data should be structured for optimal data sharing

and minimal interference among concurrent processes.

APPROACH

The work program outlined below maintains a dual emphasis:

(1) the development of generalized solutions to shared data problems

will provide outputs of maximum and continuing usefulness to existing

and planned Air Force programs; and (2) close coordination with

specific Air Force developmental programs will gain a double benefit

through the injection of realism into the generalized effort and the

opportunity to directly affect and improve a system which will be-

come operational. The two systems which seem well-suited to this

latter purpose, because of schedule and propinquity, are the MACTMS

system and the AABNCP.

73

DETERMINATION OF REQUIREMENTS FOR DATA SHARING

In order to correctly manage data sharing in a computer-based,

multi-user system, it is necessary to be aware of the potential

for the concurrent use of data by more than one process. Such a

potential can develop as a part of the operational requirements of

a system and as a result of design decisions. In technical terms,

the critical sections of processes must be identified, and the related

set intersections which may occur during concurrent operations must

be specified. This task will relate these requirements to the kinds

of information which are incorporated into system specifications

and collected during system design. Guidelines will be produced

to show system designers what information is necessary and how that

information is used.

The conduct of this work will be in close conjunction with the

MACIMS design effort which is currently collecting information on

data usage. Although this association serves to provide an opera-

tional context for this task, it may also aid the MACIMS design task.

Static descriptions of the usage of data and of proposed data struc-

tures will be used to identify related sets. Other requirements

specifications about the frequency and time distribution of events

which involve data sharing will be used to estimate the extent to

which data sharing might actually occur under operational conditions.

For such estimates, a model would be highly desirable. Such a model

could initially assume there is no penalty for sharing data and

merely measure the number of instances. In tasks described below,

the actual costs of data sharing, in terms of techniques used, could

be added to the model to show their operational impact.

74

TECHNIQUES FOR CORRECT MANAGEMENT OF SHARED DATA

An explicit enumeration is needed of the techniques and algo-

rithms for managing the concurrent sharing of data in computer-

based systems. One part of the effort will identify, develop, and

describe a variety of locking methods. The implementation of various

algorithms will be studied to determine the appropriateness of hard-

ware for realizing them. Use of firmware will be made to model hard-

ware approaches. The rules governing use of various locking methods

will also be developed and demonstrated.

A second subject for consideration will be prevention of dead-

lock due to shared data. Algorithms such as Habermann's must

be studied in more detail to determine whether they are adequate
(22)

and suitable control mechanisms. Comments such as those of Holt

on Habermann's work indicate that further analysis is required and

further refinement possible. Unpublished exploratory work by Silver

of MITRE has also shown that such algorithms must be considered in

the context of data structures as well as at the level of resources.

The approach to this task will be to survey existing published

techniques and to identify the most promising disciplines while

filling in any missing information to make such descriptions more

rigorous. Where new techniques with special theoretical or practical

advantages suggest themselves, further development work will be

carried out.

QUALITATIVE AND QUANTITATIVE CONSEQUENCES OF DATA SR\RING

Techniques

A decision to incorporate particular data sharing disciplines

into a system should depend on whether the consequences are desirable

75

or permissible and on the extent of resources required to build into

the system and maintain that discipline. The impact of data sharing

disciplines is felt on three levels: the way in which the system

design may be affected; the quantitative effect on system performance,

in terms of storage space and throughput; and the consequences to the

user of the system in terms of his mode of operation. The objective

of this task is to determine this impact. The results of this task

will be used to benefit the MACIMS and AABNCP systems, if these

results are available at an appropriate time.

The application of data sharing disciplines may affect the

methodology used for system design as well as the design itself.

There appear to be two alternative, but not exclusive, approaches to

employing data sharing disciplines: process control and data access

control. The exact relationship between these two approaches will

be examined as a result of the performance of the following sub-

tasks:

Control of System Processes

The work in this area will answer the following kinds of questions

using the techniques described below.

1. What are the primitives needed to describe controls over

shared data in the design of a system? Reference will be

made to work done in defining semantics for concurrent or

el p]
(23)

parallel processing such as Dennis and Van Horn and

Wirth.

76

2. What effect does data sharing have on the structure of a

system design; e.g., how functions are assigned to modules

in order to exercise control over their sequence of opera-

tion, the amount of data which they might share and the

length of time they might require exclusive use of some

set of data? Consideration must be given to the importance

of identifying critical sections and its effect on the

structure of the system. Since the task on Highly Reli-

able Programming in Project 5550 of the Air Force Systems

Command, of which this work is also a task, is involved

with the structure of system designs, any tie-in with the

results of that activity will be explored.

3. What new functional requirements are necessary in the de-

sign of a system to manage the sharing of data, and what

is their quantitative effect on system performance? A

prime example is the function of preventing deadlock. By

making use of the techniques which are developed by the

preceding tasks, implementation or simulation can be used

to determine the time and space requirements levied by

including these functions in the system.

Data Access Control

How do different logical and physical data structures increase

or decrease the potential for data sharing and the extent to which

such sharing can be controlled? It is necessary to apply locking

mechanisms to typical data structures to show quantitatively the

cost of using them. A model appears to be the feasible means for

varying data structures and observing their effect on the size of

related sets and on the cost of controlling access to related sets

77

with different locking disciplines. Searches will be made to see if

there is an appropriate model in existence, such as the model pro-
(24)

duced by IBM for the AABNCP, or the FOREM model of Senko. ' If

none is suitable, or modifications are required to a model, then

this work can be carried out by a subcontractor.

78

REFERENCES

1. American National Standard Vocabulary for Information Processing,
ANSI X3.12-1970, New York, American National Standards Institute,
Inc., 1970.

2. IFIP-ICC Vocabulary of Information Processing, Amsterdam, The
Netherlands, North-Holland Publishing Company, 1966.

3. Y. R. Osajima, D. L. Thomas, Lt. Col. C. E. McKusick, and
Maj. J. A. Gill, SACCS/TDMS Compatibility Study, System Develop-
ment Corporation, TM-3941, Santa Monica, California, 31 July 1968.

4. James Martin, Design of Real-Time Computer Systems, New York,
Prentice-Hall, 1967.

5. Codasyl Systems Committee, A Survey of Generalized Data Base
Management Systems, New York, Association for Computing
Machinery, May 1969.

6. A. H. Vorhaus and R. D. Wills, The Time-Shared Data Management
System: A New Approach to Data Management, System Development
Corporation, SP-2747, Santa Monica, California, 13 February 1967.

7. R. E. Bleier and A. H. Vorhaus, File Organization in the SDC
Time-Shared Data Management System (TDMS), System Development
Corporation, SP-2907, Santa Monica, California, 1 August 1968.

8. TRW Systems Group, GIM System Summary, TRW Systems, TRW Document
No. 3181-A Revision 1, Redondo Beach, California, 15 August 1969.

9. J. W. Havender, "Avoiding Deadlock in Multitasking Systems",
IBM Systems Journal, 2^ (1968), 74-84.

10. A. N. Habermann, "Prevention of System Deadlocks", Communications
of the ACM, 12, 7 (July 1969), 373-377 and 385.

11. Jack B. Dennis and Earl C. Van Horn, "Programming Semantics for
Multiprogrammed Computations", Communications of the ACM, 9_, 3
(March 1966), 143-155.

12. W. J. Waghorn, "Shared Files", File Organisation, Amsterdam,
The Netherlands, Swets & Zeitlinger N.V., 1969, 199-210.

13. P. J. Denning, "Virtual Memory", Computing Surveys, 2_, 3 (September
1970), 153-189.

79

14. E. W. Dijkstra, "Co-operating Sequential Processes", Programming

15. Bernard I. Witt, "M65MP: An Experiment in OS/360 Multiprocessing",
Proceedings of 23rd ACM National Conference, Princeton, N.J.,
Brandon/Systems Press, Inc., 1968, 691-703.

16. IBM System/360 Operating System Job Control Language, IBM
Corporation, SRL Publication GC28-6539-9, Poughkeepsie, N.Y.,
July 1969.

17. GE-625/35 GECOS-III Time-Sharing Programming Reference, General
Electric Company, CPB-1514A, Phoenix, Arizona, November 1968.

18. System Description - System/360 Formatted File System, IBM
Federal Systems Division, Arlington, Virginia, 30 September 1969.

19. SACCS/DMS Study Group, An Analysis of the SACCS Data Management
System, The MITRE Corporation, ESD-TR-70-367, (MTR-1967), Bedford,
Massachusetts, 31 August 1970.

20. J. F. Keeley, et al., "An Application-Oriented Multiprocessing
System", IBM System Journal, £, 2 (1967).

21. Reino A. Merikallio and Fred C. Holland, "Simulation Design of a
Multiprocessing System", AFIPS Conference Procedings, 3_3
(1968 FJCC) 1399-1410.

22. Richard C. Holt, "Comments on Prevention of System Deadlocks",
Communications of the ACM, 14, 1 (January 1971), 36-38.

23. Niklaus Wirth, "On Multiprogramming, Machine Coding, and
Computer Organization", Communications of the ACM, 12, 9
(September 1969), 489-498.

24. Michael E. Senko, Vincent Y. Lum, Philip J. Owens, "A File
Organization Evaluation Model (FOREM)", IFIP 68, Amsterdam,
The Netherlands, North-Holland Publishing Co., 1969, 514-519.

80

<S*^jrUg£jj^lM»ific«tion

DOCUMENT CONTROL DATA -RID
(Security rlatallleatlon of till*, body ol abattmct and Intoning armatatlon mull ba antara* whan tha ararall rapott la claaalllad)

i ORIGINATING ACTIVITY ("Corporate muthor)

The MITRE Corporation
Bedford, Massachusetts 01730

2*. »I'0«T IICURITV CLASSIFICATION

UNCLASSIFIED
36. GROUP

3 REPORT TITH

CONCURRENT DATA SHARING PROBLEMS IN MULTIPLE USER COMPUTER
SYSTEMS

4. DESCRIPTIVE NOTES (Typa ot report mnd Inelualra daft)

9. AUTHORISI (Fltmt nama, middl* Initial, Immt nmmm)

John B. Glore, Laurence B. Collins, Jonathan K. Millen

6 REPORT DA TE

JULY 1971
7a. TOTAL, NO. OF PAGES

88
76. NO. OF REFS

24
Sa. CONTRACT OR GRANT NO.

F19(628)-71-C-0002
b. PROJECT NO.

5550
c.

•*. ORIGINATOR'S REPORT NUMBERS)

ESD-TR-71-221

•0. OTHER REPORT NOW (Any othat mwibara that may ba aaalgnad
thlm raport)

MTR-2052
10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Electronic Systems Division, Air Force
Systems Command, L. G. Hanscom Field,
Bedford, Massachusetts 01730

IS. ABSTRACT

This report summarizes work performed to date under the FY'71
Project 6710 Multi-User Data Management System task. It reviews
major problems associated with the sharing of data among multiple
concurrent users, and tentatively suggests promising strategies to
cope with them. It discusses the importance of solving, ameliorating,
or avoiding such problems to the effective development of Air Force
systems of this kind. It also outlines desirable future work under this
task.

DD,FN°ORVM.,1473
Security Classification

Security Classification

14.
KIV WORD*

LINK A

• OH IT

LINK •

KOLI WT ROLI WT

COMPUTERS

DATA PROCESSING

DATA STORAGE

INFORMATION THEORY

REAL TIME OPERATIONS

SYSTEMS ENGINEERING

Security Classification

